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Abstract

Fast solute diffusion in certain dilute binary alloys can be understood by a modified version of Hagg’s rule. This method¨
Ž .is substantiated and used to analyse published data on fast diffusion of mainly 3d-solutes in the anisotropic host phases

b-U and a-Zr and to compare the results with those in bcc host phases. The activation enthalpy Q of fast diffusion consists
of elastic contributions, D H and Dh , related to the Hagg parameter l and a chemical one, D H , due to the electronic¨el el cov

solute-solvent interaction. For Fe, Co, Ni and O in a-Zr, D H can be inferred from relevant solute–host phase diagrams.cov

The Hagg-approach defines the geometrical frame within which fast solute diffusion occurs. To a certain degree it is¨
complementary to the Miedema model which, however, is bound to neglect the structural details of the host lattice essential
for interstitial diffusion.

1. Introduction

For about 30 years diffusional anomalies in two partly
overlapping groups of metals have been studied. In the
first group the anomalous phenomenon is enhanced self-
diffusion in the lower temperature range of the bcc phase
of b-Ti, b-Zr, b-Hf, g-U and -Pu and of the metals Ce,
Gd, La, Pr, and Yb, leading to curved Arrhenius plots of
the coefficient of self-diffusion D0 in those metals where1

the temperature field of the bcc phase is large enough. By
Ž w x. 0convention see, for example, Ref. 1 , the quantities D1

0 Ž .and D denote the tracer diffusion coefficients for self- 12
Ž .and impurity- 2 diffusion, respectively, in a pure host

Ž .phase 1 . D and D are the coefficients of the same1 2
Ž .tracers in the same host phase 1 containing larger con-

Ž .centrations c of the impurity 2 .2

The second group partly overlapping with the first one
constitutes the host metals for fast diffusion in certain
dilute binary alloys and contains Ti, Zr, Nb, Hf, U and Pb.
The fast diffusing solutes in these host metals are mainly

) Present address: Erasmusstr. 12, D-76139 Karlsruhe, Ger-
many.

3d-metals but in part also Cu, Ag, Au and Cd. Fast solute
diffusion in this group occurs in the isotropic, bcc and fcc
phases as well as in anisotropic hcp and related phases.
Comparing the two groups of metals it is obvious that the
enhanced self-diffusion in the ‘anomalous’ bcc metal
phases and the fast solute diffusion in the second group are
two independent phenomena caused by different physical
mechanisms. The present situation in the two fields can be
characterized as follows.

The problem of the enhanced self-diffusion in the
anomalous bcc metal phases has finally been solved during
the last eight years by the work of Herzig and coworkers
w x2,3 and has been further quantified and evaluated subse-
quently by Vogl and Petri and co-workers using QNS
Ž . Žquasi-elastic neutron spectroscopy and also QMS quasi-

.elastic Moßbauer spectroscopy as the main experimental¨
w x Ž w x.tools 4 see also, for example, Refs. 5,6 .

As regards the second problem, a considerable amount
of experimental data has accumulated in the literature.
Apart from the initial use of polycrystals the tracer tech-
nique was soon applied to anisotropic host phases and in
hcp single crystals tracer diffusion parallel and perpendicu-
lar to the hexagonal axis was studied. In more recent times
research concentrated largely on the fast diffusion of 3d-

0022-3115r97r$17.00 Copyright q 1997 Elsevier Science B.V. All rights reserved.
Ž .PII S0022-3115 96 00712-X



( )H. BlankrJournal of Nuclear Materials 240 1997 169–184170

metals in a-Zr single crystals since this metal phase is the
basis of the technically important alloys zircalloy-2, -4 and
Zr2.5Nb. The experimental difficulties encountered in this

w xwork have recently been outlined by Hood 7,8 . The
application of the modern microscopic techniques QMS
and QNS to fast diffusion has unfortunately certain limita-
tions, restriction to T-380 K and ambiguities in interpre-

w xtation 9,10 .
In the field of fast diffusion a geometrical frame is

missing within which one could understand why certain
Ž .solutes migrate by a fast e.g., interstitial diffusion mecha-

nism and other ones show normal diffusion by the vacancy
mechanism. Furthermore, the measured activation en-
thalpies have hardly been analysed. Attempts to establish

w xsuch criteria on the basis of the Miedema model 11,12
were not entirely successful.

w xTherefore in a previous paper, Ref. 13 , quoted in the
following as part I, a new approach was developed. It
takes account of the geometrical boundary conditions of
the problem by a modified version of Hagg’s rule. This¨
method was used to establish empirical correlations be-

Ž .tween the Arrhenius parameter Q activation enthalpy of
Ž .mainly 3d solutes in bcc host phases g-U, b-Zr and Nb

Žand the Hagg parameters l i.e., the ratio between solute¨
.and solvent radii of these solutes in the respective host

phases. In the present paper the empirical Hagg approach¨
is extended to anisotropic host phases, substantiated further
and applied to the qualitative analysis of fast diffusion in
a-Zr and, as far as experimental data exist, b-U.

In Section 2 first the Hagg approach established in part¨
I for a well defined class of dilute alloys is outlined and
further elaborated and then the geometry of the interstitial
sites in the host phases is described from the point of view

Ž .of the hard sphere model HSM . In Section 3, after a brief
survey of the experimental situation fast diffusion in b-
and g-U is compared. The experimental results about fast
diffusion of 3d-solutes in a-Zr are analysed on the basis of
Section 2 and the contributions to the activation enthalpy
Q are identified. In Section 4, after a survey about the
experimental enhancement factors, various aspects of the
interstitial diffusion mechanism are discussed mainly
qualitatively on the basis of the Hagg model. Subsequently¨
the model is compared with models applied previously to
fast diffusion. In Section 5, the main results are summa-
rized and some conclusions are drawn.

2. Hagg’s rule and the geometry of interstitial sites¨

2.1. Modification of Hagg’s rule to treat interstitial diffu-¨
sion in dilute alloys

In part I the conclusions drawn from an early paper in
w xthis field, Ref. 14 , have led to the following results.

Ž .1 Fast diffusion is confined to a special class of dilute
alloys. These are characterized by host phases of polyva-

Ž .lent z G4 , electropositive metals and solute atoms witho
Ž .low valence z F2 and small ionic radii.i

Ž .2 Cubic host phases have to be described by the HSM
with the model radius R defined via the bond length bM

by

R sbr2. 1Ž .M

In the present paper this definition is extended to
anisotropic host lattices: each atom in the unit cell may
now have two or more bond lengths b , b , . . . , corre-1 2

sponding to HSM radii R , R , . . . By introducing theM1 M2

empirical parameters R and R for a-Zr the modelM1 M2

takes care of the empirical and diffusion relevant fact that
all hcp phases of the d-transition metals possess a contribu-
tion to anisotropy caused by a sizeable deviation cra-

Ž1.6333 in contrast the hcp IIb-metals Zn and Cd possess
.cra)1.6333 from the ideal value 1.6333.

Ž .3 The other key point of the Hagg analysis in part I is¨
the fact that, specified on general electron theoretical
arguments, the solutes must be described by their ionic

Ž . Ž .radii R z instead of metal radii, and if R z satisfiesI i I i
w xHagg’s rule, 15 , i.e., if¨

lsR z rR -0.59 2Ž . Ž .I i M

the ion will fit with tolerable lattice distortion into the
interstice with its ‘appropriate’ ionic radius and charge
qz , mostly for octahedral coordination with CN 6. Thei

Ž .radii R z can be taken from standard compilations ofI i
Žionic radii. Comparing different published sets see, for

w x. w xexample, 16–20 , the slightly extended set of Ahrens 16
w xin 17 is preferred for the geometrically simple, dilute

interstitial binary alloys discussed here. For oxygen in
w xa-Zr the octahedral covalent radius of Ref. 21 has to be

used.
Ž .4 The relation l-0.59 is a necessary condition for

interstitial diffusion.
When establishing in part I the empirical correlations

between l and the activation enthalpies Q of 3d solutes in
bcc host phases several ‘anomalies’ in z were observed.i

These were resolved by assuming that Q has two contribu-
tions

QsD H l qD H . 3Ž . Ž .el b

The first term represents the saddle point energy for the
elementary jump of the solute to its neighbouring interstice
and has been related to l by a provisional relation with l

assumed to be proportional to the saddle point strain and a
constant C depending on the elastic constants of the solid
and containing the volume of the interstitial,

D H l fCl2. 4Ž . Ž .el

w xThe second term D H , previously called D H 13 ,b cov

describes the chemical solute–solvent interaction. How-
ever, since in addition it possesses a small elastic contribu-
tion it is better called the binding energy of the solute to its
interstitial site, see Section 4.2.2.
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Although the empirical and largely qualitative results in
part I are consistent one would like to quantify them
further and relate HSM of the host lattice and solute–
solvent interactions to the electron theory of metals. How-
ever, here a fundamental difficulty is encountered. In the

w xdensity functional theory 22,23 the lattice potential of the
valence electrons is constructed with the muffin-tin geome-

Žtry for the Wigner–Seitz approach the situation is analo-
.gous . By this the crystal volume outside the muffin-tin

spheres is attributed to valence electrons and regarded as
‘interstitial volume’ which includes also the real space of
the interstitial sites defined by the HSM. Hence electron
theory in this form is in conflict with the true interstitial
space both in the undisturbed host lattice and in the host
lattice with the interstitial ion.

A simple way of getting nevertheless some ‘zeroth
order information’ on different host metals is to look at the
valence electron states and their energies in the free host

w xatoms, see Fig. 1 with data taken from Refs. 24,25 . Apart
from Pb with 6s2 and 6p2 valence states the valence
electrons of all transition metal hosts have states nd2,
Ž . 2nq1 s and in addition 5f electrons in U. For nG4 the
d- and s-levels are only F1 eV apart. This means for the
metals overlapping bands with hybridization. The two
valence s-electrons in each case may be taken to support
the HSM.

Next, one can extend the ‘zeroth order information’
about the host lattice to the host–solute interactions by
comparing the valence electron levels of the free host atom

Fig. 1. Comparison between the valence states of the free host
atoms of possible host metals for fast diffusion. With the excep-

Ž .tion of Pb the valence bands marked by lines of all other host
metals are formed by s2- and d2-states which are closely spaced in
energy. The valence band of Pb in contrast is formed by 6p2- and
6s2-states differing in energy by more than 6 eV.

with those of the free solute atoms. Valence states rela-
tively close in energy for host and solute states are ex-
pected to combine and thus to take part in the host–solute
interaction in the conduction and valence bands. From the
semi-schematic presentation of the valence states of the

Table 1
Data of solute diffusion in the bcc host phases g-U, b-U and a-U and the related parameters for their Hagg analysis: Host radii R , solutes,¨ M

Ž .valences z, radii R z , Hagg parameters l and Arrhenius parameters D , Q¨I 0

2Ž . Ž . Ž . Ž .Solute z R nm l D cm rs Q eV T K Ref.I 0

2Ž .a Host phase: g-U, R s0.1535 nm, D f1.75 cm rs, Qs1.18"0.03 eVM 0
y2 w xNb 1 0.100 0.686 5.5=10 1.73 34

V 1 ? )0.59 see Section 4.3
Ž .2 0.088 0.573 – – –

y3 w xCr 3 0.063 0.411 5.6=10 1.06 34
y4 w xMn 2 0.080 0.521 2.0=10 0.61 34
y4 w xFe 2 0.074 0.482 2.8=10 0.53 34
y4 w xCo 2 0.072 0.469 2.6=10 0.51 34
y4 w xNi 2 0.069 0.450 6.7=10 0.70 34
y3 w xCu 1 0.096 0.625 2.2=10 1.06 34
y3 w xAu 1 0.137 0.893 4.9=10 1.32 35

a b y2 2 bŽ . w xb Host phase: b-U, R f0.1603 nm , Qf1.85 eV , D f1.4=10 cm rs 36–38M 0
3 b w xCr 2 0.089 0.56 f10 f2.4 39,40

Mn 2 0.080 0.50
b b w xFe 2 0.074 0.46 f1 f1.54 39

y3 w xCo 2 0.072 0.45 1.5=10 1.19 40

aŽ .c Host phase: a-U, R f0.1568 nmM
y10 w xCo 2 0.072 0.459 1.0=10 893 40

y1 01.75=10 913

a Value averaged over all bond lengths in the unit cell.
b Values averaged approximately over experimental data showing scattering due to non-quantified anisotropy.
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free host atoms U and Zr and of the free solute 3d-atoms
in Fig. 2 the following tendencies can be deduced.

Ž .1 In g-U the interaction between host and solutes
should occur largely via the 5f-electrons of U and the s-
and d-states of the 3d-elements. For 3d-solutes in Zr only
d- and s-states are involved.

Ž .2 The solute atoms Cr, Ni and Cu of the 3d-series are
expected to show ‘anomalies’. Especially for Cr the 4s2-
and the 3d5-states are very dose to each other. This

Žexplains its anomalies in the effective valences ionic
. Ž w x.radii in Tables 1 and 2 see also Ref. 17 and in Figs. 3

and 4. Thus Cr behaves sensitively towards different host
lattices.

Ž .3 The situation for Cu is remotely similar, this means,
besides its ‘normal’ valence s-electron even an electron of
the complete d-shell might interact with the valence states
of a- and b-Zr but not with the more remote 5f states of

g-U. For Ni the opposite seems to occur in g-U. Because
of its small ion radius only one s-electron may be given to
the top of the Fermi distribution resulting in a somewhat
higher l-value as indicated in Fig. 3 by the arrow and the
same may happen to V.

Hence in these cases effective valences z and associ-e

ated ionic radii R may occur which differ from theIe

‘normal’ values z s2 usually attributed to the 3d-ele-i

ments. The at first sight surprising success of this zeroth
order discussion of the electronic host–solute interaction
becomes understandable if one remembers the fact that the
electron theory of the d-transition metals has to be based

Ž . Žon the free-atom-like tight-binding approximation see,
w x.for example, 26 . Eventually one can combine the infor-

mation from Figs. 1 and 2 for Pb as host. Here the
interaction between host and solute is expected to occur at
two levels separated mostly by 6 eV. At the first level the

Table 2
Data D and Q of solute diffusion in the hcp host phase a-Zr and the related parameters for their Hagg analysis: HSM radii R , R ,¨0 M1 M2

Ž . 5solute valences z, radii R z and Hagg parameters l and l as well as temperature ranges¨I

2Ž . Ž . Ž . Ž .Solutes z R nm l Q eV T range K D cm rs Ref.I 0

Host a-Zr: R s0.16156 nm R s0.15894 nmM1 M2
Ž . w xNb 1 0.10 0.635 1.37p 42

50.619
y8 w xV 2 0.088 0.558 0.99p 893–1123 1.12=10 43

50.545
y2 w xCr 1 0.081 0.514 1.61 890–1126 9.5=10 36,44

5 5 y20.501 1.39 2.4=10
2 0.089 0.565

50.551
y3 w xMn 2 0.080 0.508 1.31p 909–1111 2.4=10 53

50.495
y2 w xFe 2 0.074 0.470 1.09 1032–1133 6.7=10 45

5 5 y20.458 0.925 6.6=10
1.696 -1000 62.5

5 31.865 4.13=10
a a w xCo 2 0.072 0.457 923–1070 46

5 a a0.446
31.83 826–923 1.2=10

5 41.98 862–990 4.0=10
y4 w xNi 2 0.069 0.438 0.65 )1000 5.3=10 47,54

5 5 y30.427 0.81 1.8=10
2.14 882–1025

5 21.915 6.75=10
Cu 1 0.096 0.609

50.594
w x2 0.072 0.457 1.60 888–1133 0.25 48

5 50.446 1.54 0.40
w xAg 1 0.126 0.800 49

5 5Ž .0.780 2.54 895–1117 2.20
y22.18p 6.8=10

w xO covalent 0.0737 0.468 2.12 630–870 0.49 50
50.456

Ž . w x2.38 p 920–1770 16.5 51,52

Ž .Q-values marked by p pertain to diffusion in polycrystalline a-Zr.
5Figures of l and Q marked by pertain to diffusion parallel and those without to diffusion perpendicular to the c-axis.

a Data not reliable.
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Fig. 2. Comparison between the semi-schematic atomic level
scheme of the valence electrons in free host atoms Zr and U and
the valence levels of free 3d-solute atoms and of oxygen. The
same types of atomic levels are connected by lines. Note that for
U as host the 5f-level is closest to the s-levels of the solute atoms.
For details see Section 2.1.

6p2-states of Pb combine with the s-electrons of Cu, Ag,
Cd, Au and Ni and at the second one the 6s2-states of Pb
possibly with the filled d-levels of Cu, Ag, Au and perhaps
with 3d8 of Ni.

2.2. HSM and interstitial geometry in bcc, fcc and hcp
( )a-Zr host phases

In spite of the ostensible ‘text book character’ of this
section these crystal lattices have apparently not been
discussed before from the point of view of interstitial
diffusion on the basis of the HSM. It is emphasized that in

Ž .the present context the HSM is based rigorously on Eq. 1
and its extension to anisotropic metals. Hence the empiri-
cal parameters R and R should not be confused withM1 M2

metallic radii and associated metallic valences in the litera-
ture.

'( )2.2.1. The bcc lattice, HSM radius R s ar4 3 , asM

lattice parameter
Ž .i In the bcc lattice distorted tetrahedral interstices

exist with two ‘open’ edges of length l sa and 4 edges1

with length l s0.866 a. The radius of the interstice is2
w xR s0.291 R 27 which is 30% larger than the tetrahe-t M

dral interstices in the dose packed structures with 0.223R .M

Ž .ii The mirror planes of the octahedral interstices are
defined by the cube faces of the unit cell and their apices
by the body centered atoms. Consequently these interstices
are strongly compressed along their symmetry axis, i.e

² :along the 100 directions. In this way the interstice
becomes anisotropic and has two widely differing radii,
R s0.633R and R s0.154R in the mirror planeO1 M O2 M

and perpendicular to it, respectively.
Ž .iii Contrary to the geometrical relations between octa-

hedral and tetrahedral interstices in close packed structures

Fig. 3. Fast diffusion of 3d-solutes in b- and g-U, data from Table
Ž .1a and b. Correlation of activation enthalpy Q upper panel and

Ž .related Hagg parameters l lower panel with the atomic number¨
Ž .Z of the 3d-solutes on the abscissa for host phases b-U squares

Ž .and g-U circles . Numbers at the l-values indicate the effective
valences of the solutes. Vertical arrows in the upper panel at Fe
and Cr indicate scatter in Q due to non-quantified anisotropy in
the polycrystalline host specimens. Valences and l-values for
b-U are tentative only. The critical Hagg parameter ls0.59 is¨
indicated.
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Fig. 4. Fast diffusion of 3d-solutes in a-Zr, data from Table 2.
Ž .Correlation of activation enthalpy Q upper panel and of related

Ž .Hagg parameters l lower panel with the atomic numbers Z of¨
the 3d-solutes shown on the abscissa. Q-values represented by
crosses pertain to polycrystalline a-Zr specimens. Q-values ob-
tained from single crystals show anisotropy with the symbols
indicating solute diffusion perpendicular and parallel to the hexag-
onal c-axis, respectively. Also l has two values, see Table 2.
Numbers at the Hagg parameters indicate effective valences. The¨
l-values for oxygen are marked by ) .. Its Q-value for T F870 K
is at the level of the upper branch of the Q-values of Fe, Co and
Ni valid at T -1000 K. The lower branch valid at T )1000 K
shows normal Q-values. For further details see Section 3.3 and
Section 4.2.4.

in the bcc lattice an octahedral site is composed of four
tetrahedral ones.

Depending of the size of the interstitial solute these
three properties have an interesting consequence for the
accommodation of interstitials and their diffusion mecha-
nisms.

Ž . Ža Interstitial ions with 0.291 R -R -R R de-M I c c
.fines a certain critical radius will sit in tetrahedral inter-

stices and require a static lattice distortion in which pri-
marily the four tetrahedral lattice atoms are involved. For

the elementary step of diffusion the interstitial will leave
this site either via one of the four faces or across one of
the two larger edges and jump into an adjacent tetrahedral
site. In either case five lattice atoms will be involved, four
of the old site and four of the new site with three atoms
shared by both sites.

Ž .b Interstitials with radii R -R -0.59R are tooc I M

big for displacing the four atoms around a tetrahedral
interstice but they may use the octahedral hole by squeez-
ing mainly the two body centred lattice atoms apart into

² : ² :the 100 and 100 directions. Thus they will mainly
enlarge the octahedral radius R by forming a ‘smallO2

w xcrowdion’ 29 . This may, however, be slightly asymmetri-
cal the octahedral radius R being somewhat too large inO1

any case.
The theoretical determination of the critical radius Rc

would require detailed lattice calculations involving crystal
elasticity. Yet the analysis of diffusion data can serve to
establish an empirical value of R , see Section 4.2.5.c

2.2.2. The hcp lattice of a-Zr
ŽThe lattice geometry of hcp metals is well known see,

w x.for example, 27,28 . The lattice parameters of a-Zr are
w xas0.32312 nm and cras1.5931 30 . This gives two

bond lengths b , b for each lattice atom, b sa in the1 2 1

hexagonal basal plane and b s0.31789 nm between an2
Ž .atom in a basal plane and its nearest neighbors n.n. in an

adjacent one. Thus for each atom of the host lattice there
are two model radii R and R differing by 1.73% withM1 M2

6 n.n. having R and 6 n.n. R . As a consequence inM1 M2
Ž .a-Zr the interstitial jumps of the solute within the 001

planes invariably involve only the smaller HSM radius
R of the host lattice whereas jumps parallel to the c-axisM2

Ž .involve only the larger one, R . This means in Eq. 2M1

that for the same solute ionic radius R the l-valueI

corresponding to the diffusion parallel to the c-axis, l5, is
systematically lower than the l-value corresponding to

Ž .diffusion within the 001 basal planes.
The ratio l between the radius R of the octahedralO O

site and R is of interest as reference for the Hagg¨M
Ž .parameter, Eq. 2 . For this purpose the average HSM

Ž .radius R s b qb r4 can be used giving for the octa-M 1 2

hedral interstices the ideal ratio which defines the lower
limit for the

R rR s0.414. 5Ž .O M

Hagg parameters in the fcc and hcp structures.¨
The interstitial diffusion mechanism requires a solute

ion to jump between adjacent octahedral positions. In the
Ž .isotropic fcc host lattice two possibilities exist. a Via a

two-step process the solute can leave its octahedral site
� 4parallel to a 111 plane across one of the eight faces of

the octahedron, jump into an adjacent tetrahedral position
and from there again across an octahedral face into the

Ž .next octahedron. b In a one-step process the solute could
� 4leave the octahedral cage across a 110 edge forming a



( )H. BlankrJournal of Nuclear Materials 240 1997 169–184 175

� 4small 110 crowdion at the saddle point configuration and
jump directly into the adjacent octahedral site.

In the hcp lattice the geometry between two adjacent
Ž .001 atomic layers is identical with that of the interstitial

� 4sites between two adjacent 111 layers in the fcc lattice.
Thus for the jumps of the hcp interstitial parallel to the
Ž . Ž . Ž .001 planes the mechanisms a and b can operate.

Ž .For diffusion perpendicular to the 001 planes another
Ž . Ž .mechanism c specific to the hcp geometry works: c

here chains of octahedral sites exist parallel to the c-axis
which share common faces. The saddle point configuration
is attained in this case by squeezing the three lattice atoms
apart which represent the face shared by two adjacent
octahedral cages on top of each other.

Thus the anisotropy of solute diffusion in a-Zr will
have two contributions.

Ž .i The difference between the Hagg parameters l and¨
l5 for solute jumps parallel to the hexagonal planes and
parallel to the c-axis, respectively, because of the two
HSM radii R , R , andM1 M2

Ž . Ž .ii the differences between the mechanism c operat-
Ž . Ž .ing parallel to the c-axis and mechanisms a , b operating

within the hexagonal planes. These geometrical details will
be required in Section 4.2.4.

2.2.3. Lattice structure of b-U
w xRecently 31 the complicated tetragonal structure was

w xconfirmed to be practically identical with the s-phase 32 .
From a general structural point of view b-U and the
s-phase belong to the family of the ‘Frank Kaspar struc-

w xtures’ of interpenetrating polyhedra 30,33 . In these struc-
tures space filling is attained by a distorted tetrahedral
packing of atoms. The coordination number is 14 and there
seem to be no octahedral interstices in contrast to the
simpler cubic and hexagonal structures. The structure is
compressed along the c-axis. In view of the large variety

w xof bond lengths 31 an average bond length d with the
associated average HSM radius R has been deduced, seeM

Ž .Table 1 b .

3. Analysis of experimental results on fast diffusion

3.1. General situation about the experimental data on fast
diffusion

Concerning the fast tracer diffusion in the isotropic bcc
and fcc host phases no special problems have been re-
ported, the primary solid solubility of the tracers being
relatively high in the bcc phases. Grain boundary diffusion
apparently was not found to affect the diffusion data. As
observed in part I this situation results in reliable values of
both Arrhenius parameters D and Q.0

The experimental situation for a-Zr is different due to
anisotropy and in part very restricted solid solubilities just
at the technologically interesting lower temperatures. Be-

w xcause of the related difficulties and complications 7,8 and
in spite of a considerable amount of data there is neverthe-
less a certain lack of systematic studies from the point of
view of the present paper.

For the quantitative analysis via Hagg’s rule ideally one¨
0Ž .would like to have reliable D T values between 750 and2

1136 K determined from high purity a-Zr single crystals
oriented parallel and perpendicular to the c-axis which
cover systematically all 3d-solutes from V to Ni and in
addition Cu, Ag and oxygen. Such an ideal data set could
provide quantitative relations between Hagg parameters l¨
and the Arrhenius parameters D and Q and possibly0

result in a classification of different diffusion mechanism
w xsimilar to the results from the bcc phase in part I 13 . The

limitations of the advanced microscopic methods QMS and
QNS give results which are in part difficult to interpret
w x9,10 .

As regards the anisotropic b-U host phase only the
w xsolutes Cr, Fe and Co have been investigated 39,40 .

ŽBecause of experimental difficulties anisotropy, narrow
temperature range, 941–1048 K, diffusion experiments

.only with polycrystalline specimens the data on Cr and Fe
carry large errors. Nevertheless, alone the fact that fast
diffusion exists in this strongly covalent, complicated crys-
tal phase is of considerable interest.

3.2. Comparison of the behaÕior of 3d-solutes between
g-U and b-U host phases

Ž . Ž .In Table 1 a and b the necessary information about
Ž .the experimental diffusion data, attributed ionic radii R zI

Ž .and related Hagg parameters l z in the two host phases¨
has been collected. In Fig. 3 the activation enthalpies Q
Ž .upper panel and the related Hagg parameters following¨

Ž . Ž .Eq. 2 lower panel have been plotted versus the atomic
numbers Z on the abscissa for the 3d-solutes in b- and
g-U. At the left and right ends results of two solutes, Nb
and Au respectively, with other Z-numbers are shown. Of
these Nb does not belong to the Hagg class of solutes¨

w xdefined in Section 2.1 and Ref. 14 but is nevertheless
Ž .shown in Table 1 a and in Fig. 3 for comparison.

Solutes in g-U with Hagg parameters l)0.59 show¨
high Q-values, dissolve substitutionally and migrate by the
vacancy mechanism. Though diffusion data for V is miss-

Ž Ž . .ing by analogy to V in b-Zr see Table 3 a and Fig. 3 , it
is likely that V will show l)0.59 in g-U and diffuse by
the vacancy mechanism as well. The solutes from Cr to Ni
show l-0.59, dissolve interstitially, possess low Q-val-

Ž .ues with the exception of Cr and diffuse by interstitial
mechanisms. Thus Hagg’s rule is satisfied. Cr behaves¨
exceptionally showing an anomalously high valence, low l

and high Q. The anomaly of Ni is less obvious. Apart from
Cr in g-U a correlation between l and Q following Eq.
Ž .4 may be suggested. The anomalies of Cr and Ni in g-U
may be understood from Section 2.1 and Fig. 2.

Of the three Q-values available for the host phase b-U,
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Cr and Fe carry relatively large errors, see vertical arrows
in Fig. 3, because of the unspecified pronounced anisotro-

w xpy in the host phase 36–38 . On the contrary, the be-
haviour of Co is anomalous since it does not respond to
the anisotropy of the polycrystalline, large grained speci-
mens and its Q-value is rather precise. In spite of these

Ž .differences in precision, Fig. 3 and Table 1 b show that
the Q-values of Cr, Fe and Co in b-U are roughly the
double of the values in g-U, see also Section 4.2.3.
Though further interpretation appears rather speculative on
the basis of the available data, these results in b-U deserve
attention because
1. Their enhancement factors are relatively high, see Sec-

tion 4.1.
2. Cr appears to be the only solute with a certain solubility

in b-U which stabilizes this phase sufficiently that it
can be quenched to room temperature and be kept there

w xwithout loss of mechanical stability 41 .
3. The b-U phase is rather densely packed, apparently

without octahedral interstices and possesses a strong
covalent and anisotropic bonding not otherwise encoun-
tered in pure metals.

4. The two D0-values of Co in a-U in Table 1c are2

discussed in Section 4.1.

3.3. Analysis of fast solute diffusion in a-Zr

In Table 2 the data corresponding to Table 1 have been
Ž .collected for the host phase a-Zr and in Table 3 a for

b-Zr. The activation enthalpies Q and the associated l-
values for a-Zr are plotted in Fig. 4 similar as in Fig. 3 for
the uranium phases. The Q-values of polycrystalline sam-
ples are represented by crosses and those obtained in
single crystals by symbols marking diffusion parallel and
perpendicular to the hexagonal c-direction, respectively.
At the left side of the abscissa Nb is shown as in Fig. 3 but
at the right end Au is replaced by Ag and the non-metal O.

w xThe recent single crystal measurements of O in a-Zr 50
did not reveal a noticeable anisotropy in Q. As discussed
in Section 2.2 and shown in Table 2 there are two slightly
different l-values in a-Zr. The effects related to anisotro-
py in Figs. 3 and 4 are discussed in Section 4.2.4.

In spite of the difficulties outlined in Section 3.1 the
experimental data available on single crystal a-Zr can be

Table 3
Data of solute diffusion in the host phases b-Zr, Nb and Pb and the related parameters for their Hagg analysis: Host radii R , solutes,¨ M

Ž .valences z, ionic radii R z , Hagg parameters l and Arrhenius parameters D and Q¨I 0

2Ž . Ž . Ž . Ž .Solute z R nm l D cm rs Q eV T range K Ref.I 0

Ž .a Host phase: b-Zr, R s0.1569 nmM
y6 w xNb 1 0.100 0.637 9.0=10 1.27 1174–2020 55
y27.4=10 2.23
y3 w xV 1 ? )0.59 7.6=10 1.99 1140–1470 43

0.3 2.49 1470–1670
2 0.088 0.560

y3 w xCr 1 0.081 0.516 7.0=10 1.478 1187–1513 58
y3 w xMn 2 0.080 0.510 5.6=10 1.435 53
y3 w xFe 2 0.074 0.471 7.4=10 1.12 29,57
y3 w xCo 2 0.072 0.458 3.3=10 0.95 1193–1970 29,56

Ni 2 0.069 0.438 – –
Cu 1 0.096 0.608 – –

y4 w xAg 1 0.126 0.804 4.2=10 1.37 1200–2000 59
190.5 3.36

y5 w xU 4 0.097 0.618 7.8=10 1.12 1188–1470 60

Ž .b Host phase: Nb, R s0.1432 nmM
w xV 2 0.088 0.614 2.21 3.70 43
w xFe 2 0.074 0.517 0.14 3.06 61
w xCo 2 0.072 0.503 0.11 2.85 61
w xNi 2 0.069 0.482 0.077 2.74 61
w xU 4 0.097 0.677 0.089 3.34 60

2Ž .c Host Phase: Pb, R s0.175 nm, D s0.46 cm rs, Qs1.078 eVM 0
y3 w xCu 2 0.072 0.411 7.9=10 0.35 62
y3 w xAu 3 0.085 0.486 4.1=10 0.41 63
y2 w xNi 1 ? ? 1.1=10 0.47 62
y2 w xAg 2 0.089 0.508 4.6=10 0.628 62
y2 w xCd 2 0.097 0.543 4.1=10 0.923 64

The R values of b-Zr and Nb are based on the lattice parameters at 1520 and 1570 K, respectively, amidst most of the diffusion data.M
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used for further analysis in the following and as regards
Ž .D H l in a wider context in Section 4.2.3.el

3.3.1. General results
From Fig. 4 the following general results can be de-

duced.
Ž .1 With the exception of Nb and Ag which clearly

show l)0.59 and a less reliable early polycrystalline
Ž .result on V which has l rather close to 0.59 all other

solutes possess l-0.59 and thus migrate by interstitial
Ž .mechanism s as can be verified by consulting the litera-

ture cited in the last column of Table 2.
Ž .2 There is a correlation between the lower curve of Q

versus Z and the curve l versus Z in the bottom part of
Fig. 4 with the exception of Cr, Cu and the non-metal O.

Ž .3 The three iron group solutes, Fe, Co and Ni, possess
two branches of the Q-values. The lower branch pertaining
to T)1000 K shows, as far as the data exist, regular
behavior in the relation between Q and l. In contrast the
upper branch valid at TF1000 K clearly has to be associ-
ated with a different diffusion mechanism with distinctly
higher Q-values.

Ž . Ž4 The ‘irregularities’ of Cr and Cu both identified in
.the experiments as interstitial diffusers are associated with

the fact, that in both cases the ‘normal’ valence would not
correlate with Q and the diffusion mechanism like for Cr
and Ni in Fig. 3. The reasons are found in Section 2.1 and
Fig. 2.

Ž .5 The Q-value of oxygen at the extreme right of Fig.
4 valid at TF870 K is comparable with the upper Q-
branch of the iron group metals valid in the same low
T-range. In all these cases high activation enthalpies Q
combine with low l-values and are associated with the
interstitial mechanism.

Ž . Ž .The general results, items 1 , 2 , and the high temper-
Ž .ature results of 3 demonstrate that the Hagg analysis of¨

fast solute diffusion in a-Zr yields a correlation between
Ž .Hagg parameter l and Q as indicated by Eq. 4 only for¨

Fe, Co and Ni and perhaps still for Mn. Regarding the
diffusion behavior of Cr and Cu, the low temperature
behavior of the iron group solutes and of oxygen, the

Ž .Q-values have to be expressed by Eq. 3 and the term
Ž .D H for the chemical electronic solute–solvent interac-b

tion makes a higher contribution to Q than the elastic
Ž .saddle point energy D H l .el

3.3.2. The origin of DH in the term DHcoÕ b

There are at least two different causes for the chemical
solute–solvent interaction, D H one works via ‘anomal,cov

effective valences z ’ of the solute ions and one via thee

formation of intermetallic compounds.
Ž .i ‘Anomal, effective valences z ’. Apart from the casee

of Ni in g-U this effect can be explained if for z )z note i

all valence electrons of the solute are given to the top of
the Fermi distribution and the balance z yz is used fore i

local bonding with host atoms. This appears possible on
the basis of Fig. 2 in Section 2.1. Thus the different

Ž . Ž .behaviour of Cu in g-U vacancy mechanism see Fig. 3
Ž w x.and in a-Zr interstitial mechanism 48 , see Fig. 4, may

Ž .be attributed to the large f6 eV separation of the
occupied 3d-levels of Cu from the 5f-level in U and the

Ž .smaller f3 eV difference between 3d- and 4d-levels in
Zr leading to the interaction between these two d-levels
and hence the effective valence z s2 for Cu in a-Zr. It ise

suggested that the same should also apply to Cu in b-Zr
though no experimental data exist in this case. As men-
tioned in Section 3.2, following Fig. 2, Cr is especially
prone to this mechanism.

Table 4
Ž . aTerminal solid solubilities TSS , eutectoid reaction isotherm T and first intermetallic compounds in a- and b-Zr-solute systemse

a-Zr b-Zr
5 Ž . Ž . Ž . Ž .Solute l TSS at.% T K compound T K l TSS at.% Ref.e p

w xNb 0.62 0.6 890 – 0.637 100 65
w xV 0.559 F1.0 1050 ZrV 1570 0.56 f17 662
w xCr 0.501 f0.4 1104 ZrCr 1950 0.516 f8 672
w xMn 0.495 ? 1068 ZrMn 1610 0.51 10 682
w xFe 0.458 1.4ey2 1065 Zr Fe 1158 0.471 f6.5 69,703
w x1000 71,72
w xCo 0.446 1.4ey3 1106 Zr Co 1370 0.458 3.4 73,742
w xNi 0.427 1.4ey3 1118 Zr Ni 1390 0.438 f3 74,752
w xCu 0.446 f0.2 1095 Zr Cu 1300 0.608 f6 762

b w xO 0.456 25 2400 Zr O 2240 – F10 773
w xAg 0.780 1.6 1093 Zr Ag 1464 0.804 20 782
w xAu 0.86 -1 1093 Zr Au f1470 0.874 F10 793
w xU – F0.31 1136 Zr U 880 0.618 100 802

a Transition temperature: T s1136 K; eutectoid reaction isotherm T : b-Zrsa-ZrqZr M ; TSSs terminal solid solubility of solutea r b e y x

in a-Zr at TfT ; T speritectoid.e p
b Melting point.
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Ž .ii Formation of intermetallic compounds, systems
Zr–O and Zr–Fe. The combination of the low value
lf0.46 for oxygen in Fig. 4 with the high value Qs2.12
eV finds a simple explanation in the Zr-rich side of the
binary phase diagram Zr–O whose relevant data has been
collected together with the data from other Zr-3d-solute
phase diagrams and some other solutes in Table 4. This

Ž .data represents the terminal solid solubility TSS in the
a-Zr phase at the eutectoid reaction isotherm T and thee

first Zr-rich compound in each binary system with its
peritectoid decomposition temperature T . In the Zr–Op

system T and T had to be replaced by the meltinge p

temperature of Zr O. The difference of T with regard to3 e

the arb transformation at 1136 K indicates how much a
solute stabilizes either the a- or the b-phase of Zr.

As regards oxygen the a-Zr phase is stabilized in a
dramatic way by raising the arb transformation tempera-
ture from 1136 K of pure Zr to a melting temperature of
2400 K if the interstitial oxygen concentration is increased
from zero to around 25 at.% corresponding to the composi-
tion Zr O. This effect is explained by the fact that an3

oxygen atom in an octahedral interstice makes covalent
bonds with its 6 Zr nearest neighbors, or in other words,

Ž .the complexes Oq6Zr form stable structural units within
Ž . w xthe a-Zr O phase 81 . For interstitial diffusion the 6

covalent O–Zr bonds constituting the largest part of the
Ž .contribution D H in Eq. 3 have first to be broken beforeb

the oxygen atom can be activated to perform its jump
towards a neighboring empty octahedral site with the

Ž .activation enthalpy D H l .el

The case of Fe in a-Zr is partly different. Indeed, the
system a-Zr–Fe shows also a strong solute–solvent inter-
action energy as indicated by the Zr-rich compound Zr Fe3

but otherwise properties opposite to the system Zr–O, see
Table 4.

Ž .i Fe stabilizes the b-Zr phase, i.e., lowers the arb

transformation temperature and the degree of this lowering
apparently is still a matter of debate. Following Refs.
w x71,72 it is proposed that the higher T value used bye

w xRefs. 69,70 could stem from the stabilization of the
a-phase by oxygen impurity.

Ž .ii Fe, similar as Ni and Co, has an extremely low
terminal solid solubility in a-Zr. Hence for TFT , Fe ise

practically always precipitated as Zr Fe.3

Analogous to the oxygen complexes these precipitates
have to be broken up by providing an energy D Hcov

before the Fe-ions can make the elementary interstitial
jump involving the elastic saddle point contribution

Ž . w xD H l . As emphasized repeatedly 7,8,82 these proper-el

ties of iron provide serious difficulties in a-Zr in determin-
ing reliable solute diffusion and self-diffusion data. With-
out doubt, the strong solute–solvent interactions of the

Želements oxygen and nitrogen which behaves like oxy-
.gen always present as impurities in a-Zr, will also con-

tribute to these difficulties.
Thus the low temperature branch for the activation

enthalpies of the three irongroup elements in Fig. 4 finds
its explanation in the solute–solvent interaction term D Hb

Ž .of Eq. 3 and the related TSS data and intermetallic
compounds of Table 4.

4. Discussion

4.1. Enhancement factors of fast diffusion in Õarious host
phases

A survey on the relative magnitudes of fast diffusion in
various host phases is given in Table 5. The enhancement
factor f is defined by the ratio of the coefficients fori

tracer diffusion D0 and for self-diffusion D0, f sD0rD0
2 1 i 2 1

and may vary by factors of the order of 10 between the
lower and upper limit of the useful temperature range in a
given host phase. Here only the approximate orders of
magnitude of f are of interest. In Table 5 the f -values ofi i
Ž . Ž .a the fastest diffusing solutes, Fe and Co and b the fi

values of the ‘slow’ solute Cr arc shown for the phases of
the transition metals U, Zr and Nb. The example Cr is used
because of the variable effective valence of this solute, and
Cu behaves similarly. As a general tendency one finds the
highest enhancement in the phases existing at the lowest
temperatures. For the general possible occurrence of fast
diffusion it is worth noting that in spite of strong anisotro-
py and the high covalent contribution to bonding in a-U
and especially in b-U the solutes Fe and Co possess
roughly the same enhancement factors as in Nb. Further-
more g-U and b-Zr behave as rather similar hosts for the
3d-solutes. In contrast to the f factors of Table 5 thei

maximum enhancement of self-diffusion in the ‘anoma-
lous’ bcc phase b-Zr near the bccrhcp transition is only
about 10.

Table 5
Enhancement factors f for fast diffusion of Fe, Co and Cr ini

various host phases

Ž .Host phases Solutes T K

FerCo Cr

a-U –r2300 – 920
b-U 2000r2000 140 980
g-U 130r130 13 1176

8 8 6a-Zr 3=10 r3=10 10 1110
b-Zr 210r380 10 1428
Nb 400r1500 – 1400

Ž .Host phases Solutes T K

Cu Ag Cd
5 3Pb 1.6=10 1.9=10 30 520
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4.2. Properties of the Hagg model¨

Ž .Following Eq. 3 the Hagg model provides for the first¨
Ž .time the means to identify the elastic lattice dynamic and

electronic contributions to the activation enthalpy Q for
fast diffusion. Hence the combination of the results from
crystal elasticity and electron theory of metals is required
to quantify the model. This is beyond the scope of the
present paper. However, some qualitative aspects and
properties of the model can be outlined.

4.2.1. The tolerable static lattice strain in dilute interstitial
alloys

The static lattice strain caused by a solute ion located
on an octahedral interstice of a close packed fcc or hcp
host lattice may be compared with the well known 15%
rule of Hume–Rothery for substitutional solid solubility.

Ž . Ž .Following Eq. 5 the lower limit of l zero distortion is
given by l and the upper limit l at 15% radial strain by0 m

Ž .the relation l yl rl s0.15. This leads to the follow-m 0 0

ing range of the Hagg parameters within the 15% rule¨
0.414FlF0.476 6Ž .
for dilute alloy systems with close packed host lattices
showing fast diffusion. Following Figs. 3 and 4, see also
Tables 1 and 2, this range is indeed mostly respected. Only
in the ‘open’ bcc host lattices is l s0.48 to 0.52 ob-m

w xserved 13 . Yet, in close packed host phases l f0.50m

may also occur corresponding to about 20% radial strain.
The strain parameter

s lyl l 6aŽ .Ž .o 0

can be used to estimate the related strain energy. In a
simplified approximation one obtains with the assumption
that the interstitial ion is much harder than the matrix

Dh l f6G V 2 6bŽ . Ž .el m 0

with G shear modulus of the matrix and V the volumem O

of the octahedral site. From this relation one gets Dh ofel

the order of 0.01 eV in a-Zr.

4.2.2. The binding energy DH of the solute to its intersti-b

tial site and the interaction with a lattice Õacancy
Ž . Ž .The static elastic strain energy Dh l of Eq. 6b hasel

to be added to the covalent solute–solvent interaction

enthalpy D H to obtain the binding enthalpy of the ioncov

to its interstitial site, hence

D H sDh qD H . 7Ž .b el cov

Ž .Eq. 7 has the consequence that apart from an elec-
tronic effect mutual attraction exists between the intersti-
tial ion and a nearby lattice vacancy. To quantify the
possible interactions between the interstitial solute and the

w xvacancy, following Le Claire 1 , jump frequency models
are required for the hcp a-Zr lattice to analyse the compet-
ing geometries of interstitial and substitutional solution
and diffusion and the possibilities of an interstitially mech-
anism. In this context the interaction between interstitial
oxygen and the mobility of lattice vacancies in a-Zr and

w xan a-Zr–1%Nb alloy should be mentioned 83 as well as
the interaction of Fe with lattice vacancies in the tempera-

w xture ranges T-1000 K and TG1000 K 84–86 . These
points deserve a separate investigation which is beyond the
present analysis.

( )4.2.3. The saddle point energy DH l and the elasticel

properties of the host phases
Ž .In the saddle point term D H of Eq. 4 the quantity Cel

had been related to the elastic properties of the respective
host phases and these may be represented by their bulk
moduli B. By choosing in all host phases the same solutes

Ž .for which one can assume in Eq. 3 D H 4D H oneel b
Ž .can replace in Eq. 4 D H by Q and the followingel

relation should approximately hold

BfQrl2 8Ž .
for D H 4D H . The solutes for which this relationel b

should be valid in all host phases are primarily Fe and Co
whereas it may hold for Cr, Mn and Ni only in certain host

Ž .phases due to different contributions of D H in Eq. 7 .cov

In Table 6 the relevant solutes, their Qrl2 values and
the corresponding values of bulk moduli B are shown for
each host phase. The modulus B has not yet been deter-

w xmined for g-U but it is known to be very low 87,88 , of
the order indicated. Young’s modulus E and shear modu-
lus G have been determined for b-U. The deduced value
of B is certainly much higher than in g-U, but with the
experimental difficulties encountered in the measurement

w xof E and G 88 it is subject to a large error. In contrast to

Table 6
Ž . Ž . Ž .Analysis of the elastic term D H l following Eqs. 4 and 6a in the host phases of U, Zr and Nb by comparison with the bulk moduli Bel

of these phases at relevant temperatures T

Phase a-U b-U g-U b-Zr a-Zr Nb

Ž .T K 920 1010 1100 1250 1000 1570
Solutes Co Fe, Co Mn, Fe, Co Cr, Mn Fe, Co Cr, Mn Fe Fe, Co Ni

b a aŽ . Ž . Ž .B GPa 100 f200 f20 f75 88.5 f155
2 Ž .Qrl eV ? 5.9–7.1 2.3 4.5–5.5 4.5–5.5 11.25–11.75

a w xExtrapolated and taken from graphs of Ref. 90 , respectively.
b The bulk moduli B of b- and g-U are rough indications only, see text.
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uranium the bulk moduli do not differ very much between
w xa- and b-Zr 89,90 and for Nb the quantity B is roughly a

factor of 2 higher than for Zr. The last two lines in Table 6
2 Ž .show the values of Qrl and B to fit Eq. 8 approxi-

mately. This rough correlation is less precise than the cBV
w xmethod of Varotsos and Alexopoulos 91 but is regarded

here as sufficient because of the neglect of and the missing
information on the term D H .cov

( )4.2.4. The quantities DH l , DH and anisotropic fastel coÕ

diffusion in a-Zr
The anisotropy in the Arrhenius parameters D and Q0

can be investigated on the basis of the Hagg model. Yet,¨
the experimental scatter in the preexponential factor D ,0

see Section 3.1, prevents the detailed analysis and only Q
and Q 5 of Table 2 and Fig. 4 will be discussed.

Ž . Ž .a Anisotropic diffusion of Fe, Co and Ni at T)1000
Ž . Ž .K. The analysis is based on Eqs. 3 and 4 and on the

difference DQsQyQ 5 of the Q values measured per-
Ž .pendicular and parallel to the c-axis in a-Zr see Table 2 .

ŽFor the present estimation the small contribution Dh Eq.el
Ž ..6b in D H and a small correction in D H due to theb el

difference between l and l5 is neglected and the differ-
ence DQ is written simply

5 5DQs D H l yD H l q D H yD H .Ž . Ž .el el cov cov

9Ž .

If the geometric anisotropy of the a-Zr structure de-
scribed in Section 2.2.2 dominates one has D H )D H 5 .el el

For normal valence of the solute one can assume that
D H 4D H and D H 5

4D H 5 and from Table 2el cov el cov

follows for Fe at T)1000 K the relation DQsQyQ 5 )

0 or

DQfD H yD H 5 f0.16 eV. 9aŽ .el el

The reverse anisotropy for Ni at T)1000 K, see Table
Ž .2 and Fig. 4, must then be caused by two effects: i the

Ž .migration enthalpies in the first bracket of Eq. 9 have to
Ž .be relatively small, i.e., smaller than for Fe, and ii the

Ž .second bracket of Eq. 9 must be sufficiently negative.
Thus D H 5 )D H , and the bonding of the Ni-ion in thecov cov

octahedral site must be stronger parallel to the c-axis than
perpendicular to it in order to overcompensate the geomet-
rical anisotropy.

Ž .b Anisotropic diffusion of Fe, Co and Ni at T-1000
K. For T-1000 K the situation is exactly reversed, i.e.,
DQsQyQ 5 -0, and in fact the anisotropy in the terms
D H and D H 5 must be considerable. It should now becov cov

related to the existence of the corresponding intermetallic
compounds in Table 4. To estimate D H and D H 5 forcov cov

Ž .Fe in Eq. 9 the following argument is used: for Fe the
enthalpies of migration above and below 1000 K should be

Ž .the same, see Eq. 9a . Hence, subtracting them from Q
and Q 5, respectively, at T-1000 K will give approxi-
mately D H and D H 5 at T-1000 K. The result for Fecov cov

at T-1000 K is D H f0.605 eV and D H 5 f0.94 eVcov cov

and their difference is D H yD H 5 fy0.33 eV.cov cov
Ž .c Solutes showing no anisotropy, DQf0, O in a-Zr

and Co in b-U. Following the recent careful measurements
w xof oxygen diffusion in a-Zr at TF870 K 50 it must be

assumed on the basis of the above analysis that the result
DQf0 is attained by compensation of the geometrical
anisotropy with a similar but opposite covalent one in the

Ž .octahedral complexes Oq6Zr . This is quite possible in
a-Zr. Comparison of Fe and O in Table 2 shows that both
solutes have practically the same value of l. Hence, based

Ž .on the situation for Fe under a one can deduce from Eqs.
Ž . Ž .9 and 9a for O with Qs2.12 eV and DQf0 between
500 and 1136 K reasonable values of the four quantities in

Ž . 5Eq. 9 , D H f1.1 eV, D H f1.02 eV and D H f0.95el cov el

eV, D H 5 f1.17 eV. The fact that Co in b-U, see Fig. 3cov
Ž .and Table 1 b , does not show any anisotropy may be

explained by an analogical mechanism.

4.2.5. Two fast diffusion mechanisms in bcc host lattices
When plotting the Arrhenius parameters D and Q0

from the diffusion in samples with basically the same
structure but different compositions in a common log D –Q0

diagram one finds that samples showing different diffusion
mechanisms are located on different straight lines. In part
1 this method was applied to the D and Q parameters of0

Ž .the 3d-solutes in g-U and b-Zr of Table 1 a and Table
Ž .3 a , respectively. Plotting the systems from both host

phases with l-0.59 in a common log D –Q diagram0

gives two straight lines, one with Hagg parameters in the¨
range 0.42FlF0.49 and the other one with 0.51FlF
0.53. In part I these two curves were attributed to ‘intersti-
tial diffusion’ and ‘vacancy aided interstitial diffusion’,
respectively. The more detailed discussion of the intersti-
tial sites in the bcc structure of Section 2.2.1 allows for a
clarification of this interpretation. In fact, the mechanism
associated with the range of the smaller l-values should
belong to the solutes sitting in tetrahedral sites and the
mechanism correlating with the larger l-values to solutes
in octahedral sites. Consequently, the critical solute radius
R defined in Section 2.2.1 is thus found to be l f0.50.c c

For fast diffusion in the bcc host metal Nb, see Table
Ž .3 b , the Hagg model predicts that Ni with l-0.50 uses¨

the tetrahedral interstices and Fe and Co with 0.59)l)

0.50 the octahedral ones.

4.3. Diffusion of 3d-solutes and oxygen in a-Ti and a-Hf

From the comparison of the relevant binary phase
diagrams the following general statements and predictions
can be made about the diffusion behaviour of 3d-solutes

w xand oxygen in the three group IV solutes a-Ti, 92 , a-Zr
and a-Hf.

Ž .a The Hagg parameters in a-Ti and a-Hf are nearly¨
the same as in a-Zr.
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Ž .b The system Fe–Zr is an exception within the 3d-so-
lute-group IV solvent systems. It is the only system with a
solvent-rich intermetallic of type Zr Fe together with very3

low solubility at T-1000 K.
Ž . Žc Oxygen forms octahedral structural complexes Oq
.6M with strong bonding in all three host metals. In a-Hf,

Ž .however, the bonding in the complex Oq6Hf is stronger
Ž . Ž .than in Oq6Ti and Oq6Zr .

Based on these three observations it is to be expected
Žthat the diffusion behaviour of 3d-solutes self-diffusion,

.vacancy and interstitial mechanism in the three group IV
metals is very similar with the exception of possible
special effects related to Fe in a-Zr. Oxygen should affect
the diffusion behaviour in Hf more than in a-Zr and a-Ti.
Any difference in the effect of oxygen on the diffusion of
metal solutes between a-Ti and a-Zr could be due only to
a larger Hagg parameter l in a-Ti as compared with a-Zr.¨

4.4. Interstitial solute–Õacancy pair and interstitialcy
mechanisms

For the fast diffusion in the solute–solvent system
Cd–Pb the ‘interstitial solute–vacancy pair model’ has

w xbeen developed 93 . In fact, this model is relatively close
to the Hagg model but since it is based mainly on thermo-¨
dynamic arguments it lacks the geometrical frame of the
latter. The role of the vacancies may be overemphasized
and the role of the various interactions is neglected, see
Section 4.2.2.

The interstitialcy model originally proposed for intersti-
tial Ag self-diffusion in AgBr is here rather unlikely. In
a-Zr it is very doubtful that a small interstitial solute in its
octahedral site should be able to push a large adjacent Zr
lattice atom into the next octahedral site and take its lattice
position. Yet, under irradiation this mechanism may be-
come possible for 3d-solutes. The solute ion should then

Ž .regain part of its valence electrons when it enters the
lattice position. Interstitial oxygen atoms should behave
differently.

wAs regards the fcc non-transition host metal Pb 62–
x64,94 , a correlation between Q and l exists for Cu, Au,

Ž Ž ..Ag and Cd in this order see Table 3 c , but only Cd
carries its normal valence zs2 whereas Cu and Ag have
zs2 instead of 1 and Au might adopt even zs3 instead
of 1. Thus, these experiments and other related ones
require a more detailed analysis along the lines of Section
2.1 and Figs. 1 and 2. This is not attempted here.

4.5. Hagg approach and Miedema model¨

w xSome years ago Bakker 11 published an analysis of
fast diffusion in the host phases, Pb, g-U, Pr and other host
metals. Similar to previous authors Bakker rejected the
possibility that Hagg’s rule and the associated HSM could¨
be applied to this problem and based his analysis on the

w xMiedema model 95,96 . The use of the Miedema model

for analysing fast diffusion in dilute binary alloys is cer-
tainly possible and, in fact, Bakker’s results with regard to
fast diffusion in g-U and Pb are similar to those in the
present paper. One can identify his ratio V rV as aimp

parameter which resembles the Hagg parameter l although¨
it has a different physical meaning. Incidently the numeri-
cal values are partly similar and partly even very close and
also the critical Hagg value ls0.59 seems to be numeri-¨
cally the same for Bakker’s volume ratio V rV. In fact,imp

this is not too surprising because the attribution of the
Ž .effective valences z with the associated ionic radii R ze I e

to the solute atoms in the Hagg approach corresponds to¨
Bakker’s ‘volume contraction when a metal impurity is

w xintroduced into a metal’ 11 . The advantage of the Hagg¨
Ž .approach resides in Eq. 3 , i.e., in the separation of Q into

the elastic saddle point energy and the chemical interac-
tion. Based on the Wigner–Seitz approach the Miedema
model very successfully treats the heats of solution and the
heats of formation of intermetallic compounds for binary
alloys. This is achieved by formulating a schematized
chemical interaction between the valence electrons of the
alloy constituents on a semi-empirical basis neglecting the
structural details which are just taken into account by the
Hagg approach. Hence Miedema model and Hagg ap-¨ ¨
proach are in a certain way complementary.

4.6. Enhanced self-diffusion and fast solute diffusion in the
bcc phase of g-Zr and of g-U

4.6.1. Diffusion in b-Zr
The effect of the polyvalent substitutional solutes Nb

and Mo on self-diffusion has been discussed in detail
within the frame of the anomalous self-diffusion in b-Zr,
b-Ti and b-Hf and its physical origin, the softening of the

² :LA 2r3 111 mode in the lattice vibrations of these bcc
Ž w xphases when approaching the bra transition see Ref. 5

w x.and the literature cited there, e.g., Refs. 3,97 . The inter-
action between the 4d-electrons of Nb and Zr affects this
mode and explains the lowering of the coefficient for

Ž .self-diffusion in b-Zr by Nb, D Nb , in the lower temper-1

ature range of the b-Zr phase field if b-Zr is alloyed with
Nb. The fact that the ratio of the diffusion coefficients for
tracer diffusion of Nb D0 and of self-diffusion D0 in b-Zr2 1

is 1:5 at 40 K above transition and about 1:1 at high
w xtemperatures 29,55 can be attributed to the same cause.

As regards the substitutionally diffusing solutes belong-
Ž .ing to the Hagg class of dilute alloys zF2 with l)0.59,¨

Ž Ž ..V and Ag see Table 3 a , their tracer diffusion coeffi-
cients show a curvature similar to the coefficient of self-

Ž .diffusion in b-Zr. This is indicated in Table 3 a by the
two Q-values, with the higher one at the higher tempera-
ture range.

However, evidence for curved Arrhenius plots of the
fast diffusing 3d-solutes with l-0.59 does not exist for

w xFe up to 1880 K and for Co up to 1740 K 29 . Curvature
w xmay, however, exist for Co at T)1800 K 56 . In conclu-
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sion any curvature, i.e., interaction between interstitial
² :solutes and the LA 2r3 111 mode in b-Zr, appears

hardly to exist or must be much weaker than for metallic
solutes diffusing by the vacancy mechanism.

4.6.2. Diffusion in g-U
The bcc phase of uranium showing anomally high

self-diffusion is expected to possess also the soft LA
² : w x2r3 111 mode. Axe et al. 98 discuss a possible ‘freez-

ing-in’ of TA soft phonons for the direct gra transforma-
w xtion in U which occurs under pressure 87 . A description

w xof the grb transformation becomes rather complex 99 .
Inelastic phonon scattering could not yet be studied in g-U

w xbecause of experimental problems 100 .
Because of the limited temperature range of the g-U

phase, spanning only 0.745-TrT -1.00, curvature inm

Arrhenius plots of the coefficient of self-diffusion would
be difficult to detect but the similarities with the binary
dilute alloy systems of the b-Zr host yield some informa-
tion. Like the system Zr–Nb also the bcc phase of binary
U–Zr alloys shows complete mutual solid solubility and
the behaviour of small additions of Nb to b-Zr and to g-U
should thus affect diffusion in the same way. This is in fact

Ž .the case, as can be deduced from the data in Table 1 a
w x Ž Ž . .34 . Analogous to Nb in b-Zr see Table 3 a and part I ,
the ratio D0:D0 in a-U is even larger, 10:1 about 15 K1 Nb

above the transition, and this ratio reduces to 2.8:1 at 0.97
² :T . Hence the anticipated LA 2r3 111 mode in bcc g-Um

w xis also affected by Nb as in b-Zr 101 . In g-U the
interaction with the 4d-electrons of Nb very probably
involves 5f-electrons besides the 6d-electrons, see Fig. 2.
This may be the reason for the larger ratio D0:D0 in g-U1 Nb

than in b-Zr. The similarity between the two host phases is
found roughly also in alloys between g-U and 10 at.% Zr,

w xMo and Nb, see Fig. 5 taken from Ref. 102 . Alloying
g-U with 10 at.% Zr changes the self-diffusion in g-U
little, with 10 at.% Mo considerably and with 10 at.% Nb
even more.

As regards the Hagg class solutes with zF2, Cu and¨
Au possess l)0.59 and are substitutional diffusers in
g-U. In analogy to V in b-Zr which certainly diffuses by
the vacancy mechanism because of its curved Arrhenius

Ž Ž .. Žplot see Table 3 a , one would expect V no experimental
.data available in g-U to show zs1 instead of 2, adopt

l)0.59 and migrate also by the vacancy mechanism as
Ž .suggested in Table 1 a .

This leaves a last anomaly to be mentioned which has
w xbeen found for all solutes examined in g-U 34,35 . Within

50 K of the grb transition the Arrhenius plots of all
solutes present in Fig. 3 and Table 1a possess a slight
positive curvature. This effect had been carefully examined

w xby the authors of Ref. 34 and remained unexplained. The
otherwise close resemblance of solute diffusion and self-
diffusion between g-U and b-Zr suggests when approach-
ing the grb transition that in uranium the similarity with
b-Zr must end because g-U does not transform into the

Fig. 5. The effect of alloying g-U with 10 at.% Zr, Mo and Nb,
respectively, on the coefficient of self-diffusion of g-U. Note the

w xsmall effect of Zr and the large effects of Mo and Nb 102 . See
discussion in Section 4.6.2.

hcp structure of a normal metal but into the complicated
structure indicated in Section 2.2.3. Hence the transforma-
tion cannot be prepared by the soft phonen modes L
Ž .² : Ž .² : w x2r3 111 and T 1r2 110 5,98 . Perhaps a clue to1

the structure of the b-U phase nuclei in g-U may be that
the bcc lattice may be regarded as a distorted structure
with CN 14 and also b-U possesses CN 14.

5. Summary and conclusion

Based on the previously established modified Hagg rule¨
w x13 this empirical approach has been extended to the
analysis and comparison of published data on fast diffu-
sion in a special class of dilute binary alloys for the host
phases b- and g-U, a- and b-Zr, Nb and in a preliminary
way Pb. In this way information from five aspects of solid
state science can be brought qualitatively into a coherent
picture:
Ø Discrimination between systems with fast and with

normal diffusion on the basis of the Hagg parameter l.¨
Ø The detailed geometry of the lattice structure of the host

phases by the hard sphere model.
Ø The electronic properties of the free solvent and solute

atoms.
Ø The relevant binary phase diagrams.
Ø The elastic properties of the host phases.

In particular the activation enthalpy Q of fast solid
diffusion is resolved into elastic contributions related to l
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and electronic contributions. The anisotropy of fast diffu-
sion in hcp lattices can be understood on this basis. The
special roles of Fe and O are explained as regards solute–
host interactions. The general trend in fast diffusion be-
haviour in the other group IV host metals a-Ti and a-Hf
are predicted from the comparison of the relevant binary
solute–solvent phase diagrams. Chemical solute–solvent
interaction, solute valences and related Hagg parameters l¨
can be understood in a zeroth order approximation by
comparing the energies of the valence electron states be-
tween host atoms and solute atoms. In bcc host phases two
slightly different interstitial mechanisms have been identi-
fied, depending on a critical Hagg parameter l and¨ c

solutes either occupy tetrahedral or octahedral interstices
in the bcc lattice.

In the ‘anomalous’ bcc phases g-U and b-Zr a notice-
able interaction between enhancement of self-diffusion and
fast interstitial diffusion does not exist.

The Hagg approach is compared with the interstitial-¨
vacancy pair model of Miller and the Miedema model.
Both models are partly complementary to the Hagg ap-¨
proach but lack the necessary geometrical conditions of the
latter.

In conclusion the present paper provides a new frame
for the development of the quantitative physics of fast

w xdiffusion along general directions outlined in Ref. 103 for
the various aspects of normal diffusion. The latter work
came to the notice of the author when this paper had been
finished.
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